PreCalc 30 Practice Quiz 5a

→

30.3	2	3	4
Outcome 5a:	I can sketch the graph of sin x, cos x, and	Write equations for a given	I can explain how a, b, c, d
Demonstrate	tan x over one positive and one negative	trig graph.	effects
understanding of the	period.		• Amplitude,
graphs of the primary		I can apply strategies to	• Period,
trigonometric	For trig graphs, I can determine	graph	 Phase shift and zeros
functions.	Amplitude	Y = a sin b (x-c) + d and	 Domain and range
	Period	Y= a cos b (x-c) + d	
	Phase shift		I can solve situational problems.
	 Asymptotes and zeros 		
	 Domain and range 		I made no errors.

Level 2

1. Sketch both y = sin x and y = cos x (same graph) over the interval $-2\pi \le x \le 2\pi$.

2. Sketch y = tan x over the interval interval $-\pi \le x \le \pi$.

3. Fill in the chart below, based on the graphs of sin x, cos x, and tan x.

	Amplitude	Period	Domain	Range
Sin x				
Cos x				
Tan x				

Level 3

4. For the following graphs determine the listed characteristics: (Assume a period start at x = 0)

Amplitude:

Domain:

Range:

Period:

Write the equation of the graph in form $y = A\cos B(x-C) + D$

Amplitude:

Domain:

Range:

Period:

Write the equation of the graph in form y = Asin B(x - C) + D

5. Graph each function. State the domain, the range, maximum and minimum values, x- intercepts and y- intercepts.

a)
$$Y = 4\cos\left(x - \frac{\pi}{4}\right) - 2$$

Level 4

6. During a 24 hour period of illness a child's temperature can be modeled by the function

$$T = 4\sin\frac{\pi}{24}h + 37$$

 24^{-1} , where T is the child's temperature in degrees Celsius and h is the number of hours that have passed since the child first became ill. Determine the child's temperature after:

- a. 3 hours
- b. 7 hours
- c. 12 hours
- d. 24 hours

- 7. A bicycle tire with radius 33cm rotates at a rate of 5 revolutions per second. The top of the valve stem is located 7cm above the surface of the road. Use technology.
 - a. Draw a graph showing the height of the top of the valve stem above the ground level in terms of time. Assume that the valve stem is initially at its lowest position.
 - b. Write an equation of a cosine function that describes the height of the top of the valve stem, y, as a function of the time, x. Use a negative value for A and a horizontal shift of 0.
 - c. What is the height of the valve stem above the ground 10.11 seconds after it is at its lowest point?
 - d. When does the valve stem first reach a height of 40 cm above the ground?
 - e. For how many seconds in each revolution is the valve stem more than 40 cm above the ground?