

Key Terms

radical function

square root of a function

radical function

- a function that involves a radical with a variable in the radicand
- $y = \sqrt{3x}$ and $y = 4\sqrt[3]{5} + x$ are radical functions.

Does a feather fall more slowly than a rock? Galileo Galilei, a mathematician and scientist, pondered this question more than 400 years ago.

In 1971, during the Apollo 15 lunar landing, Commander David Scott performed a similar demonstration on live television. Because the surface of the moon is essentially a vacuum, a hammer and a feather fell at the same rate.

Investigation page 16 in your textbook

Let's do this as a group...

Investigate a Radical Function

Materials

- grid paper
- graphing technology (optional)

For objects falling near the surface of Earth, the function $d = 5t^2$ approximately models the time, t, in seconds, for an object to fall a distance, d, in metres, if the resistance caused by air can be ignored.

- 1. a) Identify any restrictions on the domain of this function. Why are these restrictions necessary? What is the range of the function?
 - b) Create a table of values and a graph showing the distance fallen as a function of time.
- 2. Express time in terms of distance for the distance-time function from step 1. Represent the new function graphically and using a table of values.
- 3. For each representation, how is the equation of the new function from step 2 related to the original function?

Reflect and Respond

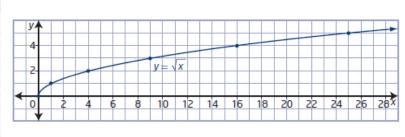
- 4. a) The original function is a distance-time function. What would you call the new function? Under what circumstances would you use
 - b) What is the shape of the graph of the original function? Describe the shape of the graph of the new function.

Radical Functions

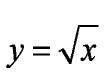
Using technology, graph the following function...

$$y = \sqrt{x}$$

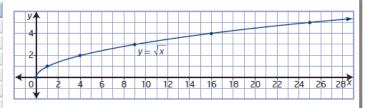
X	у
0	0
1	1
4	2
9	3
16	4
25	5



- domain and range
- shape
- endpoint



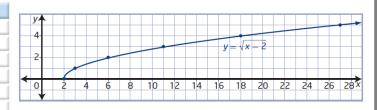
X	У
0	0
1	1
4	2
9	3
16	4
25	5



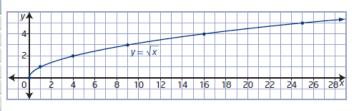
Now let's apply a transformation...

Use your knowledge of transformations to predict!

$$y = \sqrt{x-2} \begin{array}{c|cccc} & 2 & 0 \\ & 3 & 1 \\ & 6 & 2 \\ \hline & 11 & 3 \\ & 18 & 4 \end{array}$$

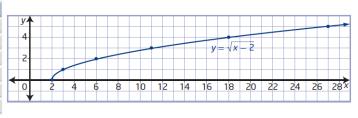


X	у
0	0
1	1
4	2
9	3
16	4
25	5

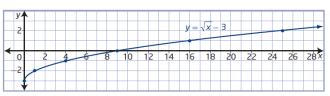


$$y = \sqrt{x-2}$$

У	
0	
1	
2	
3	
4	
5	
	0 1 2 3 4



$$y = \sqrt{x} - 3$$



How are they the same? How are they different? Domain? Range?

Your turn...

Sketch the graph of $y = \sqrt{x+5}$ by creating a table of values and the sketching the graph. What is the domain? Range?

Previously, we have explored transforming functions with a, b, h, and k

$$y = af(b(x - h)) + k$$

Now, if $y = \sqrt{x}$ then we can write...

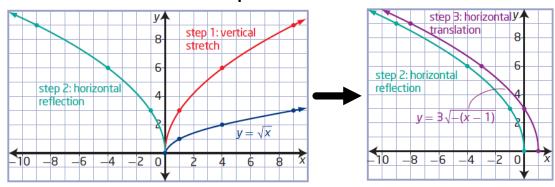
$$y = a\sqrt{b(x-h)} + k$$

How will a, b, h, and k affect the graph?

Example

Sketch the graph of the function $y = 3\sqrt{-(x-1)}$ Compare the domain and range

Method 1 Transform the Graph



method 2 next page

Method 2 Mapping Points

$$y = 3\sqrt{-(x-1)}$$

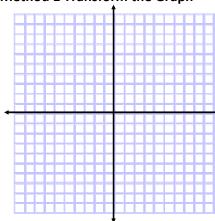
Transformation of $y = \sqrt{x}$	Mapping
Vertical stretch by a factor of 3	$(0, 0) \rightarrow (0, 0)$
	$(1, 1) \rightarrow (1, 3)$
	$(4, 2) \rightarrow (4, 6)$
	$(9, 3) \rightarrow (9, 9)$
Horizontal reflection in the y-axis	$(0, 0) \rightarrow (0, 0)$
	$(1, 3) \rightarrow (-1, 3)$
	$(4, 6) \rightarrow (-4, 6)$
	$(9, 9) \rightarrow (-9, 9)$
Horizontal translation of 1 unit to the right	$(0,0) \rightarrow (1,0)$
	$(-1, 3) \rightarrow (0, 3)$
	$(-4, 6) \rightarrow (-3, 6)$
	$(-9, 9) \rightarrow (-8, 9)$

Example

Sketch the graph of the function $y = -2\sqrt{x+3} - 1$ by transforming the graph of $y = \sqrt{x}$

Identify the domain and the range of $y = \sqrt{x}$ and describe how they are affected by the transformations

Method 1 Transform the Graph



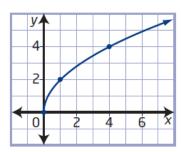
$$y = \sqrt{x}$$

$$y = -2\sqrt{x+3} - 1$$

Method 2 Mapping Points

Example

Determine a radical from a graph

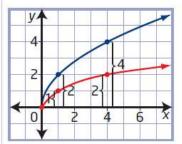


solution next two pages

Graphically

View as a Vertical Stretch ($y = a\sqrt{x}$)

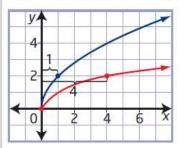
Each vertical distance is 2 times the corresponding distance for $y = \sqrt{x}$.



This represents a vertical stretch by a factor of 2, which means a = 2. The equation $y = 2\sqrt{x}$ represents the function.

View as a Horizontal Stretch ($y = \sqrt{bx}$)

Each horizontal distance is $\frac{1}{4}$ the corresponding distance for $y = \sqrt{x}$.



This represents a horizontal stretch by a factor of $\frac{1}{4}$, which means b=4. The equation $y=\sqrt{4x}$ represents the function.

Algebraically

View as a Vertical Stretch

Substitute 1 for x and 2 for y in the equation $y = a\sqrt{x}$. Then, solve for a.

$$y = a\sqrt{x}$$

$$2 = a\sqrt{1}$$

$$2 = a(1)$$

$$2 = a$$

The equation of the function is $y = 2\sqrt{x}$.

View as a Horizontal Stretch

Substitute the coordinates (1, 2) in the equation $y = \sqrt{bx}$ and solve for b.

$$y = \sqrt{bx}$$

$$2 = \sqrt{b(1)}$$

$$2 = \sqrt{b}$$

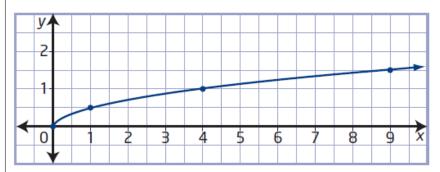
$$2^2 = (\sqrt{b})^2$$

$$4 = b$$

The equation can also be expressed as $y = \sqrt{4x}$.

Your Turn

- **a)** Determine two forms of the equation for the function shown. The function is a transformation of the function $y = \sqrt{x}$.
- **b)** Show algebraically that the two equations are equivalent.
- c) What is the equation of the curve reflected in each quadrant?



Page 72

- # Level 2
- # Level 3
- # Level 4

1 - 8, 10 - 12, 14, 16

Add "Key Ideas" from digital textbook when it becomes available

2.1 Radical Functions.notebook	October 18,